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Rule-based Understanding of Signals

H. Penny Nii
Edward A. Feigenbaum
Heuristic Programming Project
Computer Science Department
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ABSTRACT

Su/X and SU/P are knowledge-based programs which
employ pattern-invoked inference methods. Both
tasks are concerned with ¢the interpretation of
large quantities of digitized signal data. The
§ task of SU/X is to understand "continuous signals",
b that is, signals which persist over time. The task

of SuU/Pp is to interpret protein X-ray
crystallographic data. Some features of the design
are: (1) 1incremental interpretation of data

employing many different pattern-invoked sources of
b knowledge, (2) production rule representation of
3 knowledge, including high level strategy knowledge,
" (3) "opportunistic" hypothesis formation using both
i data-driven and model-driven techniques within a

4 general hypothesize-and-test paradigm; and (4)

E multilevel representation of the solution

é hypothesis.
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1 INTRODUCTION AND SUMMARY

This paper describes a design of knowiedge-based
programs which employ pattern-invoked inference methods.
Domain and strategy knowledge are represented as production
ruies to be invoked when appropriate situations arise in
the problem-solving process. The same basic design
phiiosophy is wutilized in two task domains, both of which
are concerned with the interpretation of large voiumes of
digitized physical signais. The tasks are (1) the
understanding of continuous signals produced by objects and
(2) the interpretation of protein x-ray crystaliographic
data in terms of a three-dimensional modei of the moiecule.
The programs associated with these tasks are calied SU/X
and SU/P, respectively.

Some of the design concepts in SU/X and SU/P are
rooted in the HEARSAY-II program [4, 6-7]. Concepts which
have been borrowed are: (a) a giobai data base, caiied the
blackboard, for the integration of knowledge sources and
(b) a multilevel representation of the soiution hypotheses.
These basic concepts are integrated into a system design
that emphasizes: (a) the representation of knowledge in
production rules, (b) the representation of the controu
structure as sources of knowliedge reiated to
probiem-soiving methods and strategies, (c) the capabiiity
of the program to explain its reasoning steps, and (d) a
ievel of generaiity of the basic design concepts leading to
application in different tasks or domains.

1.1 Major Themes

The "understanding" of physical signals often requires
using information not present in the signal data
themseives. Exampies of such information are: (a) in the
continuous-signal problem, the characteristics of the
signal-producing objects, (b) in the protein-modeiing
problem, the amino acid sequence and the stereochemicai and
protein chemistry constraints. Each such source of
knowiedge may at any time provide an inference which serves
as a basis for another knowiedge source to make yet another
inference, and so on, until all reievant information has
been used and appropriate inferences have been drawn.

Essential to the operation of the program is its modei

of the developing hypothesis. The modeu is a
symbol-structure that is buiit and maintained by the
program, contains what is known about the unfoiding
situation, and thus provides a context for the ongoing
anaiysis. The model is wused as a reference for the
interpretation of new information, assimiiation of new
events, and generation of expectations concerning future
events. It Is the program’s "cognitive fiywheel".




SU/X and SU/P are "knowiedge-based"” programs (footnote
1). Their powers are largely derived from the knowledge
given to them by "expert" human analysts and/or "expert"
algorithms. Major problems in the design of such systems
show up vividly in these two programs:

a. Knowiedge acquisition. This 1is a task of
systematicaily ferreting out the informai and
semiformal knowledge held by the expert. The

breadth and sheer volume of an expert’'s knowledge
is what makes his analysis general and powerful;
yet, obtaining that knowledge, which he often does
not realize he is using, is a painstaking and
inexact process.

b, Knowiedge representation. Having acquired the
knowledge in its "human" form, we must represent

it in a form that is convenient and efficient for
machine processing and at the same time reasonably
"naturai" (bear in mind that the knowledge rarely
boils down merely to a set of numbers) -- a
difficult and time-consuming task.

€' Irtegration of multipie, diverse sources of

knowledge. Program and information structures
must be created by which the various kinds of
knowledge <can "work together"™ to form a coherent
and accurate hypothesis. When the knowledge
exists at many different lievels of abstraction and
aggregation (say, from alpha-helix substructure
all the way down to electron density values in an
electron density map), one has a major design
problem,

1.2 Major Terms and Concepts

The task of "understanding" the data is accomplished
at various leveis of anaiysis,. These levels are exhibited
in Figure 1.1 for the continuous-signal interpretation
probiem and in Fligure 1.2 for the protein-modeiing probiem.
The most integrated -- the highest -- levels for the two
problems invoive the description of the signal-producing
objects, and the three-dimensional model of the protein.
The lowest l1evels, that is, the ievels closest to the data,
consist of the line features derived from the signal data,
and the atoms and their coordinates in three space.

At each 1ievel, the units of analysis are the
hypothesis elements, These are symboi-structures that
summarize what the available evidence indicates in terms
that are meaningful at that particuliar ievel.
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Bridging between the levels of analysis are sources
knowiedge [4,7]. A knowledge source (KS) is capable of
putting forth the inference that some hypothesis elements
present at its "input" level imply some particular
hypothesis elements(s) at its "output" level. A source of
knowiedge contains not only the knowledge necessary for
making its own specialized inferences, but also the
knowledge necessary for checking the inferences made by
other sources of knowledge. The inferences which draw
together hypothesis elements at one level into a hypothesis
element at a higher level (or which operate in the other
direction) are represented symbolically as links between
levels (See figures 1.1 and 1.2). The resulting network,
rooted in the input data and 1integrated at the highest
level into a description of the hypothesized problem
solution, is called the current best hypothesis, or the
hypothesis for short. Each source of knowledge holds a
considerable body of specialized information that a human
expert would generally consider "ordinary". Sometimes this
is relatively "hard" knowledge or "textbook" knowledge.
Also represented are the heuristics, that 18, "rules of
good guessing" a human expert develops in his area of
expertise. These " judgmental" rules are generally
accompanied by estimates from human experts concerning the
weight that each rule should carry in the analysis.

Each KS is composed of "pieces"™ of knowledge. By a
plece of knowledge we mean a production rule, that is, an
IF-THEN type of implication formula. The "IF" side, also

. called the situation side, specifies a set of conditions or

patterns for the applicability of the particular rule. The
"THEN" side, also <called the action side, symbolizes the
implications to be drawn (more precisely, various
processing events to be caused) if the "IF" conditions are
met. (Refer to [2] for an excellent overview of production
rules.)

The knowledge of how to perform, that is, how to use

the available knowledge sources, is another kind cf
knowledge that experts possess. This type of knowledge is
also represented 1in the system in the form of
control/strategy production rules, which promote

fiexibility 1in specifying and modifying strategies of
analysis.

Hypothesis formation is an "opportunistic" process.
Both data-driven and model-driven hypothesis formation
techniques are used within the general hypothesize-and-test
paradigm. One of the tasks of the control/strategy
knowledge source is to determine the appliicability of these
methods to different situations. The unit of processing
activity is the event. Events symbolize such things as




"what inferences to make", "what symbol-structures to
modify", "what to look for in the data", and so on. The
basic control liloop for these event-driven programs, is one
in which 1lists of events (events sometimes include new
data) and the set of control/strategy rules are
periodicalily scanned to determine the "next thing to do"
(footnote 2).

In the folilowing sections we discuss issues related to
the representation of the hypothesis, the knowledge
sources, and the control structure. Before continuing,
however, we will briefly describe the two tasks that have
been implemented and 1list some guidelines for choosing
applications in which this type of system organization may
be useful.

2 THE TASKS
2.1 Interpretation of Continuous-Signals (SU/X)

The signal-understanding program performs anaiysis of
data derived from a digitized ©plot of continuous signals,
the interpretation of which is to a considerable degree a
function of time. Examples of data having this
characteristic are =electromagnetic and acoustic signails,
and signals from hospital patients monitored in an
intensive care unit. The "front-end" signal-processing
hardware and software detect energy "packets" appearing at
various spectral frequencies, and follow these packets in
time. The current system is designed to analyze a digitized
description of these data. At the end of each time period,
say, a few minutes, the wuser is given an 1integrated
analysis of the interpreted objects within its data
purview. [5]

2.2 Interpretation of Three-Dimensional Signal Data:
Protein Crystaliography (SU/P)

The task of this program is to infer three-dimensional
modelis of protein molecules. The modei is derived from an
interpretation of the electron density map of the
crystallized protein. The density map is, in turn, derived
from x-ray diffraction data. These data typically yieid a
pooriy resolved distribution of the electron density within
the protein molecule, and the location of individual atoms
are generally not identifiabie. Traditionally, the protein
crystaliographer embodies his interpretation of the
electron density map in a "bail and stick"™ molecular modeil
fashioned from metal parts. These parts are strung together
to buliid a model which conforms to the electron density map
and is also consistent with protein chemistry and
stereochemical constraints. The current system tries to
simulate humans who build models incrementally from the
most "obvious" regions of the electron density map. The
incremental, opportunistic strategies used by our program
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to form hypotheses closely resemble the problem-solving
methods used by human model buiiders. Refer to [3] for
more complete description of the problem.

3 SUITABLE APPLICATION AREAS

Building a signal interpretation system within the
program organization summarized above can best be described
as "opportunistic” analysis. Bits and pleces of
information must be used as opportunity arises to buiid
slowly a coherent picture of the world -- much ilike putting
a Jigsaw puzzle together. Some thoughts on the
characteristics of problems suited to this approach are
listed below:

1o Large amounts of signal data need to be analyzed.
Examples include the interpretation of speech and
other acoustic signals, X-ray and other spectrail
data, radar signais, photographic data, etc. (A
variation involves understanding a iarge volume of
symbolic data; for example, the maintenance of a
global plotboard of air traffic based on messages
from various air traffic control centers.)

2. Formal or informal interpretive theories exist.
By informali interpretive theory we mean lore or
heuristics which human experts bring to bear in
order to "understand" the data. These inexact and

informal rules are 1incorporated as KSs in
conjunction with more formal knowledge about the
domain.

3. Task domain can be decomposed hierarchically in a
"natural way" [4]. In many cases the domain can
be decomposed into a series of data reduction
levels, where various interpretive theories (in
the sense described above) exist for transforming
data from one level to another.

4, "QOpportunistic" strategies must be used. That is,
there is no computationally feasible "legal move
generator" that defines the space of solutions in
which pruning and steering take place. Rather, by
reasoning about bits and pieces of available
evidence, one can incrementally generate partial
hypotheses that will eventualy lead to a more
global solution hypothesis.

3.1 Data-Driven vs Model-Driven Hypothesis Formation
Methods

We have combined data- and model-driven methods of

hypothesis formation in the design of SU/X and SU/P. By
"data-driven" we mean "inferred from the input data". By

-7




"modei-driven" we mean "based on expectation"™ where the
expectation 1is inferred from knowledge about the domain.
For example, a hypothesis generated by a KS which infers an
amino acid sidechain from the electron density data is a
data-driven hypothesis. On the other hand, a hypothesis
about the existence of an amino-acid sidechain that s
deduced from topological knowledge of the protein 1is a
model-based hypothesis. In the former case, the data is
used as the basis for signai analysis; in the latter case,
the primary data is used soleliy to verify the expectation.

There are no hard-and-fast criteria for determining
which of the two hypothesis formation methods 1s more
appropriate for a particuiar signal-processing task. The
choice depends, to a large extent, on the nature of the KSs
which are avalliabie and on the power of the analysis model
available. Our experience points strongly toward the use
of a combination of these techniques; some F¥S's are
strongly data dependent while others are strongiry model
dependent . In the continuous-signal interpretation
program, for example, the majority of the inferences are
data-driven, with occasional model-driven inferences. The
converse 1s true in the protein model-building wich places
more emphasis on model-driven hypothesis generation. The
foilowing are guidelines we have used in determining which
of the two methods is more appropriate:

)i Signal to Noise Ratio. Problems which have
inherently low S/N ratios are better suited to
solutions by model-driven programs; the converse
is true for problems with high S/N ratios.

2y Availability of a model. A model, sometimes
referred to as "the semantics of the task domain",
can be available in various forms: (1) input to
an abstract ievel of the hypothesis structure, (2)
general knowledge about the task domain, or (3)
specific knowledge about the particular task. In
the protein crystallography problem, for instance,
the amino acid sequence (the topology of the
protein) serves as a model for guiding the
interpretation of the primary data. However, in
the continuous-signal interpretation problem, the
model is drawn from general knowledge about the
signal sources and from other relevant external
sources of information that serve to define the
context., If a reliable modei is avaiiabie, the
data-interpretation KSs can be wused as verifiers
rather than generators of inferences; this reduces
the computational burden on the signal-processing
programs at the "front end".




4 THE NATURE OF THE HYPOTHESIS

In order to integrate a diversity of knowledge about
the task domain, the domain 1is decomposed hierarchically
into levels of analysis. We will describe briefly some of
the basic ideas on the nature of the hypothesis (footnote
3).

A signal interpretation problem can be viewed as a
problem of "transforming®™ signals representing an object
into a symboiic description of the ojbect on a more
abstract levei. We use the word "transformation" to mean a
shift from one representation of an object (digitized
signals) to another (symbollic description) using any formal
or informal rules,

The data structure hierarchy reflects a pian for the
utilization of the various data transformation KSs which
contribute to the total data interpretation process.
Generally these transformational steps invoive data
reductions of the primary data in a stepwise fashion from
the detailed to the more abstract description of the
object. However, we have found that some of fthe most useful
KSs generate inferences spanning several ievels. For
example, in the protein-modeling problem, a human can "see"
in the electron density data, helical substructures without
knowing or observing the details of each atom placement.
This kind of knowledge 1is usually very specific to
situations; human experts know, and use, many of these
specialized, informal bodies of knowledge.

The data structure of the solution hypothesis is a

linked network of nodes, where each node (hypothesis
element ) represents a meaningful aggregation of lower level
hypothesis elements. A link between any two hypothesis

elements represents a result of some action by a KS and
indirectly points to the KS itself. A link has associated
with it directional properties. In general, the direction
indicates one of the the following: (1) A link which goes
from a more abstract to a less abstract level of the
hypothesis 1is referred to as an "expectation-link". The
node at the end of an expectation-link 1is a model-based
hypothesis element, and the link represents "support from
above" (i.e. the reason for proposing the hypothesis
element is to be found at the higher level). (2) A link
which goes in the opposite direction, from lower levels of
abstraction to higher, is referred to as a
"reduction-iink". The node at the end of a reduction-liink
is a data-based hypothesis element, and the link represent
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"support from beiow" (i.e. the reason for proposing the
hypothesis element is to be found at a lower leveli).
(These directions correspond loosely to "top~-down" and
"bottom-up" path generation.) Examples of KSs and
hypothesis elements generated by the KSs are shown in
Figure 2.

The protein-modeiing problem posed some difficuities
in the design of its hypothesis structure. These can be
attributed to several factors. First, the decomposition of
the solution space (the three-dimensional model) and the
abstractions of the primary data (electron density) do not
result in one consistent data hierarchy but resuit in two
hierarchies. Second, fhe two hierarchies overiap
semantically at some leveis but are not representationally
compatible. Third, very iittle is known about mapping the
object between the ftwo spaces. As 1indicated in Figure 3,
however, the two hierarchies, with a network of links, can
be merged into a single representation of the probliem
space. This representation indicates that hypothesis need
not be represented as a strict hierarchy; it can be
represented as a more general network of related elements.
(Refer to [3] for more detailed description.)

5 THE NATURE OF THE "CONTROL"
A system’s performance depends both on the competence
of each KS and on the utilization of these KSs within the

context of the goals of the task domain.

There are two seperate but equally important issues
involved in a design of a knowledge-based performance

program: (1) the availability and the quaiity of the
specialist KSs that cooperate in the building of a
hypothesis. (These KSs define the hierarchy of
abstractions of the hypothesis.) (2) the optimal
utilization of these KSs. If we view the KSs as resources

that are availabie for solving a problem, then the optimai
resource allocation strategy 1is determined by the qualiity,
the size, and the cost of fthe KSs, and the state of the
current hypothesized solution. The controli structure must
be sensitive to, and be able to adjust to, the numerous
possible solution states which arise in the course of
solving a probiem. Within this viewpoint, then, what is
commoniy called the "control structure" becomes another
totaliy domain-dependent knowiedge source. The notion of a
"hierarchic control" is an attempt to come to grips with
the issues of resource allocation and "control" strategies.

«10=-
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5.1 Hierarchicaily Organized Control Structures

In a "hierarchically organized control structure,"
problem-solving activities themselves form a hierarchy of
knowledge necessary for solving the problem. On the jiowest
level is a set of knowiedge sources the tasks of which are
to make the primary inferences in the hypothesis network
previousiy described. We refer to this level of knowledge

as the "hypothesis-formation" level. At the next level are
"meta" KSs that have knowledge about the capabiiities of
the KSs in the hypothesis-formation level. We refer to

this level as the "KS-activation" level; a KS on this levei
represents a policy on knowledge utilization, At the
highest level is the Strategy-KS which analyzes the qualiity
of the current sojution to determine what region of the
data to anlyze next; it also determines what kind of
strategy to use.

Another way to describe this organization 1is as
foillows: The KSs are organized hierarchicaily -- much like
the management structure in a corporate environment -- in
terms of the scope of their knowliedge and the specificity
of their functions.

Exampie: A KS capable of deciding whether to liook for
helices or to continue 1looking for a large amino acid
sidechain would possess a higher level of knowledge
than a KS whose function is to infer the placement of
atoms of some amino acid sidechain. It is a higher
level because its area of expertise (choosing the best
problem solving strategy for a given situation), is
broader in scope and narrower in the knowledge of the
processing specifics. It does not have, and it need
not have, any knowledge of the details of the
execution of the problem-solving strategy it chooses.

This control hierarchy should be clearly distinguished
from the hierarchy of hypothesis 1levels. The hypothesis
hierarchy represents an a priori plan for the solution
presented by a "natural" decomposition of the anaiysis
problem. The control hierarchy, on the other hand,
represents the organization of the problem-solving
activities necessary for the formation of the hypothesis.
Figure 4 shows a general relationship between the
organization of the hypothesis structure and the
organization of the control structure. Table 1 summarizes
the scope of KSs on each level of control hierarchy.

«a11-
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5.2 Control Structure Implementation

All information needed by the different KSs |is
contained 1in a giobal data structure called the
"bliackboard". The "blackboard" concept has its origin in
HEARSAY [4] and is extended in SU/X and SU/P. The contents
of the blackboard in SU/X and SU/P constist of:

1. The current best hypothesis (CBH)

2n The Event-iist: A 1ist of changes in the
hypothesis which have not yet been processed by
any KS. An event also contains the name of the KS
and the identifier of the rule which caused the

change.

B The Event: A global variable <containing the
currentiy "active event", that is, an event which
is currentiy being processed by some KS. The
Event aiso represents the current focus of

attention.

4, The Problems-lilist: A list of unresolved probiems
encountered by various KSs. Such problems range
from expected data not yet available, to
detectabie "errors" in the program (e.g.

insufficient knowledge).

5. The Event history list: The Event, together with
its Predecessor and Successor events form a causal
chain of reasoning. In the continuos-signal
understanding problem, the Event history 1list is
sometimes used by KS to analyze series of events
which occurred over a period of time. More
generalily, it serves as a data base from which
reasoning traces are generated and "how" and "why"
questions answered. (See reference [1,8)] for some
exampies of this type of traces.)

5.2.1 Hypothesis Formation Level

At the lowest ievei of control -- the most data
specific level -- are the inference-generating KSs, or the
speciallist-KSs. Each specialist-KS has the task of
creating or modifying hypothesis elements, evaluating
inferences generated by other specialist-KSs, and
cataloging of missing evidence which are essential for a KS
to generate meaningful inferences.
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Each speciaiist-KS has access to the blackboard. Its
focus of attention is that portion of the blackboard
containing the latest change(s) made to the current
hypothesis. Although a KS has access to the entire
hypothesis, it normally "understands"™ only the descriptors
contained in two 1levels, its 1input levei and its output
level.,

INFERENCE-GENERATION. Inference-generation is the
creation or modification of hypothesis eiements; it is the
"hypothesize" part of the hypothesize-and-test paradigm.
An inference-generator may use a data-driven or
model-driven hypothesis formation method. As mentioned
earlier, a KS is represented as a set of production rules
consisting of "situation-action" pairs o The "situation"
for the inference-generator is a particular state of those
hypothesis elements containing data relevant to the KS. A
match between a description in the hypothesis eiement and
the situation-side of a rule indicates that a KS can make
some conjectures regarding that hypothesis element. When
the appropriate KS 1is invoked, the "action" part wilil
transform the current hypothesis to a new current
hypothesis either by adding new links to the structure,
creating new hypothesis elements, or changing the attribute
values of a hypothesis element (see Table 1. for a
summary).

INFERENCE-EVALUATION. Inference evaluation involves
the appraisal of inferences generated by other KSs; it is
the "test" part of the hypothesize-and-test paradigm. For
each inference level there are wusually more than one
specialist-KS capable of generating 1inferences on that
levei. When a KS is invoked because of a particuiar event,
another KS may already have processed the salient event.
In such a circumstance, the currently active KS evaluates
the inference generated by the other KS. The evaluation can
result in the KS agreeing with, disagreeing with, or being
indifferent about the particular iInference being evaluated.

If there i1s agreement, the confidence in that inference is
increased; if there 1s disagreement, either the confidence
value is decreased or an alternative hypothesis is
generated. There is no action taken for "I don’t know"

situations.

PROBLEM-CATALOGING. Problem cataloging involives
attempting to identify missing evidence essential for a KS
to generate meaningful inferences. If a KS 1s unable to
make new iInferences when calied wupon to do so, it may be
due to lack of knzwiedge about the particular situation or
due to lack of necessary information, that is, the current
situation does not meet the conditions on the situation
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sides of the ruies. If the specialist-KS is "ignorant"
then its knowledge-base need to be augmented in some way.
If the cause is due to lack of particular evidence, a KS
can request it by placing notice on the Problems-list,
This calls the system s attention to a particular situation
in which a solution is possible "...if x were true." Since
a specialist-KS 1is not aware of the importance (or the
unimportance) of its own immediate needs within the general
framework of the solution, the decision to pursue or not to
pursue the needs of the specialist-KSs is made by a higher
level KS.

5.2.2 KS-Activation Level

At the level immediately above the
hypothesis-formation 1levei are the KS-activators whose
tasks are to invoke the specialist-KSs as appropriate, The
KSs on this level represent various policies and
problem-soiving strategies related to the utilization of
the specialist-KSs. 108 for example, events are processed
on an earliiest-occurences-first policy, we would have a
breadth-first strategy; if events are processed on 2
latest-occurences-first policy, we would have a depth-first
strategy.

If there is more than one specialist-KS available to
process an event, some policy is needed to guide the order
in which these KSs are to be utilized. Different
KS-activators can be made to reflect different policies,
ranging from fastest-first to most-accurate-first (footnote

). There are currently two kinds of KS on the
KS-activation level, the Event -driver and the
Expectation-driver. For each event the Event-driver
activates specialist-KSs based on the degree of
specialization (and assumed accuracy) of the KSs. The

Expectation-driver processes items on the Problems-iist on
the basis of how critical the needed evidence 1is to the
emerging hypothesis. This evaiuation of how-critical for
the continuous-signal problem is sharply defined as part of
the knowledge of the domain. In the protein-modeling
problem, however, the evaluation <criteria are much more
heuristic, and in fact are just another element of the
overall analysis strategy.

The Event-driver. An event type represents an a priori
grouping of similar changes to the hypothesis, that is, it
represents the abstractions of possible changes to the
hypothesis. The changes, together with the identity of the

ruies which produced the changes, are put on a giobaliiy
accessible list calied the "Event-list". The Event-driver
invokes the appropriate Specialist-KSs based on the

information contained in the event or group of events.
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Expectation-driver. The task of the
Expectation-driver is to monitor the items on the
Problems-list to see if any events which might satisfy the
conditions on the Problems-iist have occurred. If the
conditions have occurred, it will activate the

specialist-KS which had arranged the request. (footnote §5)
5.2.3 Strategy Level

The set of rules at the Strategy-level captures a

human expert s knowledge of how to solve a problem. The
task of the Strategy-KS -- the highest control level -- is
to choose the best problem-solving strategy for the current
state of the solution. Its expertise lies, first, in

determining how <close the current hypothesis is to the
actual solution. In neither SU/X nor SU/P are there formal
mechanisms to measure the differences between the current
best hypothesis and the "right answer". The program
detects when the solution hypothesis is "on the right
track™ by use of heuristic criteria. For example, in the
protein modeliing problem a iarge number of connected nodes
on the stereo-substructure level may imply that the
hypothesis is approaching a solution.

A consistent inability to verify expectation-based
hypothesis elements may signal an error in the hypothesis.
A more general indication of 1ineffective hypothesis
formation appears as a consistent generation of conjectures
whose confidence values are below a threshhoid value; and
which therefore indicates that the analysis is "bogged
down".

A strategy-KS must also decide orn a course of action
once a difference between the hypothesis and the "right
answer™ is found. Note that these two functions of the
Strategy-KS -- noticing weak parts of the hypothesized
solution and choosing the appropriate corrective actions --
correspond to the situation and ¢the action parts of
production rules. Currently, the Strategy-KS can take one
of three possiblie actions:

1. 1invoke the Expectation-driver to see if the local
needs/goals are satisfiable by recent event(s);

2 invoke the Event-driver to process the latest
changes in the hypothesis;

3. decide what region of the data space to work on

next, f.e., determine the region of minimail
ambiguity in the data.
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6 GOAL-DIRECTED ACTIVITY: SOME SPECULATIONS

Our experience indicates that although the data-driven
and model-driven hypothesis formation methods in
combination are powerful, some situations are best handied
with a goal-driven method, i.e. utilizing a goal structure
and goali-seeking search processes. In the programs
described, the occasional lack of certain evidence can halt
the wholie probiem-soiving process. However, the need for
missing evidence may already be known and cataiogued on the
Probiems-iist,. Under such a circumstance the obvious
solution is to set a goai for "seeking" that evidence.
Within the context of the current impiementation, a
goal-directed search through the solution space can be
accomplished by': E) adding a Goai-driver on the
KS-activation control level, (2) implementing a
backward-chaining mechanism for the rules as in the MYCIN
system [1], and (3) adding rules to the Strategy-KS to
choose between data-driven, model-driven and goal-driven
methods of hypothesis formation as appropriate.

7 SUMMARY AND CONCLUDING REMARKS

SU/X and SU/P are two application programs that have
been written to reason toward an understanding of digitized
physical signals. The essentjal features of the programs’
design are: (1) data- and modeli-driven, opportunistic modes
of hypothesis formation in which the "control" is organized
hierarchicaily, and (2) a giobally accessibie hypothesis
structure augmented by focus-of-attention and historical
information which serve to integrate diverse sources of
knowledge. The basic design is simiiar in many ways to the
HEARSAY-II Speech Understanding System design. Ikt ds
applicablie to many different types of problems, especiaily
to those probiems that do not have computationalliy feasible
"legai move generators" and must therefore resort to
opportunistic generation of aiternate hypotheses.

The use of production rules to represent
controi/strategy knowliedge offers the advantages of
uniformity of representation and accessibility of knowliedge
for purposes of augmentation and modification of the
knowiedge base. Because the line-of-reasoning 1is often a
complex compounding of the eiemental steps indlcated by the
rules, a dynamic expianation capability is needed. We did
not discuss this important feature of the programs. Nor
did we discuss the faciiity which aliows assignment of an

expert s degree of wuncertainty for each rule entered. The
use ¢f this facility is not well deveioped currentiy in the
programs discussed. (See References 8 and 9 for simiiar

but better deveioped capabilities in the MYCIN program.)
We believe that facilities for explanation and for inexact
inference must be integrated into the program design at the
Initial stages.
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Footnotes

SU/X was implemented in the context of a military
signal-understanding application. It is a large
INTERLISP program that performed well on a variety of
complex signal-interpetation tasks within the domain.
SU/P, also written in INTERLISP, is under deveiopment,

The events are stored in three lists, each of which
requires its own special treatment; knowledge-based
events i.e. events specifically related to changes
in the hypothesis; time-based events , i.e., those
events specificaliy related to expectations of "what
will happen when"; and problems , i.e. expectations
from the programs’ "model of the situation" for which
the clinching confirmatory or disconfirmatory evidence
has not yet been found.

As mentioned earlier, the design of the hypothesis
structure 1in SU/X and SU/P is based on the concepts
found in HEARSAY-II. We refer you to [4,7] for a more
detailed description.

The 1issues of focus of attention and resource
allocation policies, as described by Hayes-Roth and
Lesser [6], are important ones. A subsequent paper

will describe the implementation of these policies
within the SU/X and SU/P framework.

The probiems which are "need-for-evidence"® can be
viewed as "subgoals-to-be-achieved". The systems are
currently biased toward an opportunistic mode of
hypothesis formation, and the implicit strategy for
such subgoals is "wait and see".
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Component sources of signal

KSk

Signal feature groups

Signal features

Figure 1.1 Hypothesis Structuré (su/x)"

3-D Model

Stereo— substructures

KS;

K
Superatoms sk

KSi

Atoms

Figure 1.2 Hypothesis Stucture (SU/P)*

#* The nodes represent hypothesis elements.
The arrows represent KSs which infer hypothesis element(s) on one level
from hypothesis elements on another level.
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Knowledge Source Utilization in Hypothesis Formation
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Figure 4.
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Specialist-KS (on Hypothesis-formation Level)

Has access to:

. primary data,

hypothesis elements,

facts, and

. events in the Event history list.

WN -
.

May act to:

1. change the values of attributes of hypothesis elements or
2. change the links (relationships) in the hypothesis structure, and
3. inform the system of its actions by:

a. putting on the Eventlist the type of changes that were made, or
b. putting unresolved prolblems on the Problems-list, or
c. ask to be recalled at a later time (generate time-based event).

Event- and Expectation-Drivers (on Knowledge-Source-Activation Level)

Has access to:

1. events on the Eventlfst,
2. items on the Problems-list, and
3. time-based events.

May act to: invoke appropriate Specialist-KSs in an appropriate sequence
to reflect its resource allocation policy.

Strategy-KS (on Strategy Level)

Has access to:

. Eventlist,

. Problems-list,

. time-based events,

. Current-Best-Hypothesis (or a summary of CBH if availabie), and
. Event- and Expectation-Drivers.

VT W N -

Maz act to:

1. choose the appropriate KSs on the KS~Activation level, and/or

2. change the focus of attention (i.e. choose and event, a problem,
a dormant region of the hypothesis, or a different region of the
data to process next).

Summary of KS Activities on Different Control Levels

Table 1.
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